25 research outputs found

    Diffusion-weighted magnetic resonance imaging (MRI) without susceptibility artifacts: single-shot stimulated echo acquisition mode (STEAM) MRI with iterative reconstruction and spatial regularization

    Get PDF
    This work describes a new method for diffusion-weighted (DW) magnetic resonance imaging (MRI) without susceptibility artifacts. The technique combines a DW spin-echo module and a single-shot stimulated echo acquisition mode (STEAM) MRI readout with undersampled radial trajectories and covers a volume by a gapless series of cross-sectional slices. In a first step, optimal coil sensitivities for all slices are obtained from a series of non-DW acquisitions by nonlinear inverse reconstruction with regularization to the image and coil sensitivities of a directly neighboring slice. In a second step, these coil sensitivities are used to compute all series of non-DW and DW images by linear inverse reconstruction with spatial regularization to a neighboring image. Proof-of-principle applications to the brain (51 sections) and prostate (31 sections) of healthy subjects were realized for a protocol with two b-values and 6 gradient directions at 3 T. Including averaging the measuring times for studies of the brain at 1.0×1.0×3.0 mm3 resolution (b =1,000 s mm−2) and prostate at 1.4×1.4×3.0 mm3 resolution (b =600 s mm-2) were 2.5 min and 4.5 min, respectively. All reconstructions were accomplished online with use of a multi-GPU computer integrated into the MRI system. The resulting non-DW images, mean DW images averaged across directions and maps of the apparent diffusion coefficient confirm the absence of geometric distortions or false signal alterations and demonstrate diagnostic image quality. The novel method for DW STEAM MRI of a volume without susceptibility artifacts warrants extended clinical trials

    Self consistent kinetic simulations of SPT and HEMP thrusters including the near-field plume region

    Full text link
    The Particle-in-Cell (PIC) method was used to study two different ion thruster concepts - Stationary Plasma Thrusters (SPT) and High Efficiency Multistage Plasma Thrusters (HEMP-T), in particular the plasma properties in the discharge chamber due to the different magnetic field configurations. Special attention was paid to the simulation of plasma particle fluxes on the thrusters channel surfaces. In both cases, PIC proved itself as a powerful tool, delivering important insight into the basic physics of the different thruster concepts. The simulations demonstrated that the new HEMP thruster concept allows for a high thermal efficiency due to both minimal energy dissipation and high acceleration efficiency. In the HEMP thruster the plasma contact to the wall is limited only to very small areas of the magnetic field cusps, which results in much smaller ion energy flux to the thruster channel surface as compared to SPT. The erosion yields for dielectric discharge channel walls of SPT and HEMP thrusters were calculated with the binary collision code SDTrimSP. For SPT, an erosion rate on the level of 1 mm of sputtered material per hour was observed. For HEMP, thruster simulations have shown that there is no erosion inside the dielectric discharge channel.Comment: 14 pages, 11 figures This work was presented at 21st International Conference on Numerical Simulation of Plasmas (ICNSP'09

    Velocity vector reconstruction for real‐time phase‐contrast MRI with radial Maxwell correction

    Get PDF
    Purpose To develop an auto-calibrated image reconstruction for highly accelerated multi-directional phase-contrast (PC) MRI that compensates for (1) reconstruction instabilities occurring for phase differences near urn:x-wiley:07403194:media:mrm29108:mrm29108-math-0003 and (2) phase errors by concomitant magnetic fields that differ for individual radial spokes. Theory and Methods A model-based image reconstruction for real-time PC MRI based on nonlinear inversion is extended to multi-directional flow by exploiting multiple flow-encodings for the estimation of velocity vectors. An initial smoothing constraint during iterative optimization is introduced to resolve the ambiguity of the solution space by penalizing phase wraps. Maxwell terms are considered as part of the signal model on a line-by-line basis to address phase errors by concomitant magnetic fields. The reconstruction methods are evaluated using simulated data and cross-sectional imaging of a rotating-disc, as well as in vivo for the aortic arch and cervical spinal canal at 3T. Results Real-time three-directional velocity mapping in the aortic arch is achieved at 1.8 × 1.8 × 6 mm3 spatial and 60 ms temporal resolution. Artificial phase wraps are avoided in all cases using the smoothness constraint. Inter-spoke differences of concomitant magnetic fields are effectively compensated for by the model-based image reconstruction with integrated radial Maxwell correction. Conclusion Velocity vector reconstructions based on nonlinear inversion allow for high degrees of radial data undersampling paving the way for multi-directional PC MRI in real time. Whether a spoke-wise treatment of Maxwell terms is required or a computationally cheaper frame-wise approach depends on the individual application

    FLASHlight MRI in real time - a step towards Star Trek medicine

    Get PDF
    This work describes a dynamic magnetic resonance imaging (MRI) technique for local scanning of the human body with use of a handheld receive coil or coil array. Real-time MRI is based on highly undersampled radial gradient-echo sequences with joint reconstructions of serial images and coil sensitivity maps by regularized nonlinear inversion (NLINV). For this proof-of-concept study, a fixed slice position and field-of-view (FOV) were predefined from the operating console, while a local receive coil (array) is moved across the body—for the sake of simplicity by the subject itself. Experimental realizations with a conventional 3 T magnet comprise dynamic anatomic imaging of the head, thorax and abdomen of healthy volunteers. Typically, the image resolution was 0.75 to 1.5 mm with 3 to 6 mm section thickness and acquisition times of 33 to 100 ms per frame. However, spatiotemporal resolutions and contrasts are highly variable and may be adjusted to clinical needs. In summary, the proposed FLASHlight MRI method provides a robust acquisition and reconstruction basis for future diagnostic strategies that mimic the usage of ultrasound. Necessary extensions for this vision require remote control of all sequence parameters by a person at the scanner as well as the design of more flexible gradients and magnets

    Real-time multi-directional flow MRI using model-based reconstructions of undersampled radial FLASH – A feasibility study

    Get PDF
    The purpose of this work was to develop an acquisition and reconstruction technique for two- and three-directional (2d and 3d) phase-contrast flow MRI in real time. A previous real-time MRI technique for one-directional (1d) through-plane flow was extended to 2d and 3d flow MRI by introducing in-plane flow sensitivity. The method employs highly undersampled radial FLASH sequences with sequential acquisitions of two or three flow-encoding datasets and one flow-compensated dataset. Echo times are minimized by merging the waveforms of flow-encoding and radial imaging gradients. For each velocity direction individually, model-based reconstructions by regularized nonlinear inversion jointly estimate an anatomical image, a set of coil sensitivities and a phase-contrast velocity map directly. The reconstructions take advantage of a dynamic phase reference obtained by interpolating consecutive flow-compensated acquisitions. Validations include pulsatile flow phantoms as well as in vivo studies of the human aorta at 3 T. The proposed method offers cross-sectional 2d and 3d flow MRI of the human aortic arch at 53 and 67 ms resolution, respectively, without ECG synchronization and during free breathing. The in-plane resolution was 1.5 × 1.5 mm2 and the slice thickness 6 mm. In conclusion, real-time multi-directional flow MRI offers new opportunities to study complex human blood flow without the risk of combining differential phase (i.e., velocity) information from multiple heartbeats as for ECG-gated data. The method would benefit from a further reduction of acquisition time and accelerated computing to allow for extended clinical trials

    Solutioin of Poisson's Equation in Electrostatic Particle-on-cell Simulation

    Get PDF
    In electrostatic Particle-in-Cell simulations of the HEMP-DM3a ion thruster the role of different solution strategies for Poisson?s equation was investigated. The direct solution method of LU decomposition is compared to a stationary iterative method, the successive over-relaxation solver. Results and runtime of solvers were compared, and an outlook on further improvements and developments is presented

    High-resolution myocardial T1 mapping using single-shot inversion-recovery fast low-angle shot MRI with radial undersampling and iterative reconstruction.

    No full text
    To develop a novel method for rapid myocardial T1 mapping at high spatial resolution. METHODS: The proposed strategy represents a single-shot inversion-recovery (IR) experiment triggered to early diastole during a brief breathhold. The measurement combines an adiabatic inversion pulse with a real-time readout by highly undersampled radial FLASH, iterative image reconstruction and T1 fitting with automatic deletion of systolic frames. The method was implemented on a 3 T MRI system using a GPU-equipped bypass computer for online application. Validations employed a T1 reference phantom including analyses at simulated heart rates from 40 to 100 bpm. In vivo applications involved myocardial T1 mapping in short-axis views of healthy young volunteers. RESULTS: At 1 mm in-plane resolution and 6 mm section thickness, the IR measurement could be shortened to 3 s without compromising T1 quantitation. Phantom studies demonstrated T1 accuracy and high precision for values ranging from 300 to 1500 ms and up to a heart rate of 100 bpm. Similar results were obtained in vivo yielding septal T1 values of 1246 ± 24 ms (base), 1256 ± 33 ms (mid-ventricular) and 1288 ± 30 ms (apex), respectively (mean ± SD, n=6). CONCLUSION: Diastolic myocardial T1 mapping with use of single-shot inversion-recovery FLASH offers high spatial resolution, T1 accuracy and precision, practical robustness and speed. Advances in knowledge: The proposed method will be beneficial for clinical applications relying on native and post-contrast T1 quantitation

    Influence of Electron Sources on the Near-field Plume in a Multistage Plasma Thruster

    Get PDF
    n order to obtain a better understanding of the near-field plume of a multistage plasma thruster, the influence of an external electron source is investigated by Particle-In-Cell simulations. The variation of the source position showed a strong influence of the magnetic field configuration on the electron distribution and therefore on the plume plasma. In the second part of this work, higher energetic electrons were injected in order to model collision-induced diffusion in the plume. This broadens the electron distribution, which leads to a more pronounced divergence angle in the angular ion distribution

    A Block-Based Union-Find Algorithm to Label Connected Components on GPUs

    Get PDF
    In this paper, we introduce a novel GPU-based Connected Components Labeling algorithm: the Block-based Union Find. The proposed strategy significantly improves an existing GPU algorithm, taking advantage of a block-based approach. Experimental results on real cases and synthetically generated datasets demonstrate the superiority of the new proposal with respect to state-of-the-art
    corecore